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This paper provides the self-consistent estimator (SCE) and the nonparametric maximum likelihood estimator
(NPMLE) for ‘‘middle-censored’’ data, in which a data value becomes unobservable if it falls within a random
interval. We provide an algorithm to find the SCE and show that the NPMLE satisfies the self-consistency
equation. We find a sufficient condition for the SCE to be concentrated on the uncensored observations. In
addition, we find sufficient conditions for the consistency of the SCE and prove that consistency holds for the
special case when one of the ends is a constant. Some simulation results and an illustrative example, using
Danish melanoma data set, are provided.
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1 INTRODUCTION

Estimation of the unknown distribution of a random variable is of fundamental importance in

statistics. In areas such as reliability, biometry, general medical follow-up studies and clinical

trials, the distribution function of the underlying lifetime or more specifically. the survival

function is of paramount interest.

In these situations, the random variable of interest is the lifetime and the observations refer

to times of occurrence of an event such as death due to a certain cause under study, or times

for equipment failure. When complete data are available, the Empirical Distribution Function

(EDF) is used and it has many desirable properties. However, in many practical situations, it

is quite common to have incomplete data, making the standard empirical distribution

function (EDF) unavailable. Often, such incomplete observation of the data results from a

random censoring mechanism. When observations are censored to the right, the product

limit estimator due to Kaplan and Meier (1958) is used in place of the EDF and similar

estimators exist for the left-censored case. Gehan (1965) and Turnbull (1974) and others con-

sidered doubly-censored data (where both left and right censoring occur simultaneously) and

estimators for the distribution function have been developed. Groeneboom and Wellner
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(1992) and Geskus and Groeneboom (1996) studied the case of ‘‘interval-censored’’ data

where one can only observe a censoring event and whether the time of the event of interest,

say death, occurred before or after the occurrence of the censoring event. Nonparametric

Maximum Likelihood Estimators (NPMLE) for the distribution of interest have been studied

by various authors for all these cases. A Self Consistent Estimator (SCE) is usually obtained

by solving a set of equations called the self-consistency equations (see Efron, 1967; Tarpey

and Flury, 1996), and under some conditions this coincides with the NPMLE. Tsai and

Crowley (1985) have shown that many of these cases can be unified by applying a gene-

ralized maximum likelihood principle. They also point out that solving the self-consistency

equation is essentially equivalent to applying the EM algorithm for the corresponding

missing data problem. See Dempster and Laird (1977) and McLachlan and Krishnan

(1997) on the EM algorithm.

In this paper we consider an important variation and generalization of censoring where a

data point becomes unobservable if it fell inside a random interval. When that happens we

observe a censorship indicator and the interval of censorship. We will refer to this as

‘‘middle-censoring’’. Left censoring, right censoring and double censoring are special

cases of this ‘‘middle censorship’’ by suitable choice of this censoring interval, which can

be infinite. Middle-censoring where a random middle part is missing appears at first glance,

as complementary to the idea of double-censoring where the middle is what is actually

observed. However, if one considers these two schemes carefully along with the resulting

data sets (see next section), they turn out to be quite distinct ideas.

Before discussing the estimator, we consider some situations where this type of censoring

may arise. In general, in any lifetime study, if the subject is temporarily withdrawn from the

study we will have an interval of censorship. It can be equipment failure that could occur

during a period where observation is not possible or is not being made. In biomedical studies,

the patient under observation may be absent from study for a short period during which time

the event of interest may occur. As an example of double censoring, Turnbull (1974) refers to

a study of African infant precocity by Leiderman et al. (1973), where establishing the for

infant development for a community in Kenya was the purpose. A sample of 65 children

are considered and each child was tested monthly to see if (s)he had learned to accomplish

certain tasks. The time from birth to the learning time was the variable of interest. In their

analysis, double-censoring occurred due to late arrivals (the child had already learned the

skills before entering the study) and losses (the child had not acquired the skill by the end

of time study). We envisage a scenario where there are no late entries or losses as such,

but during a fixed time interval (this fixed interval is indeed, a random interval relative to

the individual’s lifetime) the observation was not possible, such as the temporary closure

of the clinic due to an outbreak of say, war. If some children, of varying ages, developed

the skill during this time, we do not observe the exact age of these children at the time of

skill development, rather only the information that the event of interest occurred during a

certain time interval. These ideas can, of course, be extended to more general random sets

of censorship such as union of intervals or even more complicated sets but we have not

explored this in detail.

In Section 2, we derive the self-consistency equation for the middle censored case and

show that the NPMLE indeed satisfies the self-consistency equation. A simple example

which shows how one computes the NPMLE is also given. In Section 3 we explore condi-

tions under which the self-consistent estimator (SCE) is consistent and prove the consistency

in an important special case. Section 4 illustrates the SCE for middle-censored case for a

simulated data set as well as for a real data set on Melanoma survival, from Andersen

et al. (1993). A computer program which allows the computation of the SCE is available

by writing to the authors.
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2 SELF-CONSISTENCY AND THE NPMLE

Let Xi, i ¼ 1, . . . , n, be a sequence of independent identically distributed (i.i.d.) random vari-

ables with unknown distribution F0. Let Yi ¼ (Li, Ri) be a sequence of i.i.d. random vectors,

independent of Xt ’s, with unknown bivariate distribution G such that P(Li < Ri) ¼ 1. While

X denotes the variable of interest, Y represents the censoring mechanism. Using the notation

di ¼ I [Xi =2 (Li, Ri)],

we observe

Zi ¼ Xi when di ¼ 1 i:e:, if Xi =2 (Li, Ri)

¼ (Li, Ri) when di ¼ 0 i:e:, if Xi 2 (Li, Ri)

That is, we either observe the original value Xi, if there is no censoring or the interval of

censoring (Li, Ri) when there is censoring.

In many censoring situations, if we were to try to estimate the distribution function via the

EM algorithm the resulting equation takes the form

F̂F(t) ¼ E
F̂F

[En(t)jZ]

as described by Tsai and Crowley (1985), where En is the empirical distribution function.

This equation was first introduced and referred to as self-consistency equation by Efron

(1967). In the middle censored case the SCE Fn, satisfies the equation

Fn(t) ¼
1

n

Xn
i¼1

diI (Xi � t) þ �ddiI (Ri � t) þ �ddiI [t 2 (Li,Ri)]
Fn(t) � Fn(Li)

Fn(Ri�) � Fn(Li)

� �
(1)

where �ddi ¼ 1 � di. (For the rest of the paper we will follow the convention that �xx, for any

variable or function x, indicates 1 � x). As in the case of doubly-censored data, there is no

explicit closed form solution to the equation and has to be computed by the iterative formula

F̂F (mþ1)(t) ¼ E
F̂F (m) [En(t)jZ]:

The convergence of the algorithm is assured by Theorem 2.1 of Tsai and Crowley (1985)

provided that the initial estimator gives positive mass to all observed points. See Remark 2.1

below regarding the choice of the initial estimator. For a general discussion on self-

consistency and its relation to EM algorithm, see Tarpey and Flury (1996).

Let F denote the set of all distribution functions on the line. For F 2 F the likelihood of

the sample is given by

L(F) ¼
Yn
i¼1

[F(Xi) � F(Xi�)]di [F(Ri�) � F(Li)]
1�di :

Denoting by DF(x) ¼ F(x) � F(x�), f(F) � (1=n) log L(F) is given by

f(F) ¼
1

n

Xn
i¼1

[di log(DF(Xi)) þ �ddi log [F(Ri�) � F(Li)]]

¼

ð
{I [x =2 (l, r)] logDF(x) þ I [x 2 (l, r)] log[F(r�) � F(l)]} dPn(x, l, r)
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where Pn is the empirical measure of {(Xi, Li, Ri): 1 � i � n}. The maximizer of f is clearly

the NPMLE. In the next theorem, we show that the NPMLE for middle censored data

satisfies the self-consistency equation. But before that we need the following lemma.

LEMMA 1 Define

At(x) ¼
F(t ^ x)

F(t)
� F(x) if F(t) > 0

¼ 0 otherwise (2)

where t ^ x ¼ min(t, x). Then

K(x) ¼ F(x) þ hAt(x)

defines a class of distribution functions for h sufficiently close to zero.

Proof Note that we need to show this only for F(t) > 0 since At � 0 when F(t) ¼ 0.

K(x) ¼ (1 � h)F(x) þ h
F(t ^ x)

F(t)

is a convex combination of two cdf’s and hence is a cdf for 0 � h < 1. For negative h, write

K ¼ F � hAt with h > 0 so that

K(x) ¼ (1 þ h)F(x) � h
F(t ^ x)

F(t)
:

Clearly K(�1) ¼ 0 and K(1) ¼ 1. It is also right-continuous so it remains to show that

it is monotone. We check this separately on (�1, t] and [t, 1). For x in (�1, t],

K(x) ¼ (1 þ h)F(x) � h
F(x)

F(t)

¼ F(x) 1 � h
(1 � F(t))

F(t)

� �
:

This is clearly bounded by 1 and is non-negative if h � (F(t)=1 � F(t)) and in this case, K is

monotone non-decreasing. Similarly on [t, 1),

K(x) ¼ (1 þ h)F(x) � h

¼ F(x) � h(1 � F(x)):

Again this is bounded by 1 and is non-negative so long as h � (F(x)=1 � F(x)) which is

assured if h � (F(t)=1 � F(t)) since t � x. Monotonicity of K is clear. j

THEOREM 1 The NPMLE satisfies the equation

F(t) ¼
1

n

Xn
i¼1

diI (Xi � t) þ �ddiI (Ri � t) þ �ddiI [t 2 (Li, Ri)]
F(t) � F(Li)

F(Ri�) � F(Li)

� �
: (3)
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Proof If F maximizes f, then the directional derivative of f towards At should be zero at F

i.e., satisfies the equation

0 ¼ lim
h!0

f(F þ hAt) � f(F)

h

¼

ð
I [x =2 (l, r)] lim

h!0

log[DF(x) þ hDAt(x)] � log DF(x)

h

�

þI [x 2 (l, r)] lim
h!0

log[F(r�) � F(l) þ h(At(r�) � At(l))] � log [F(r�) � F(l)]

h

�

� dPn(x, l, r)

as the integral involved is really a finite sum and hence interchanging of limit and integration

is valid. When F(t) > 0, the first of the two limits inside the integral is

DAt(x) lim
e!0

log[DF(x) þ e] � log DF(x)

e
¼

DAt(x)

DF(x)
¼

I (x � t)

F(t)
� 1:

The second limit is similarly equal to

At(r�) � At(l)

F(r�) � F(l)
¼

F(t) ^ F(r�) � F(t ^ I )

F(t)[F(r�) � F(l)]
� 1

where F(t) ^ F(r�) stands for F(t) if t < r and F(r�) otherwise. Thus we get

1 ¼

ð
I [x =2 (l, r)]

I (x � t)

F(t)
þ I [x 2 (l, r)]

F(t) ^ F(r�) � F(t ^ I )

F(t)[F(r�) � F(l)]

� �
dPn(x, l, r)

or

F(t) ¼

ð �
I [x =2 (l, r)]I (x � t) þ I (l < x < r � t) þ I [x, t 2 (l, r)]:

�
F(t) � F(l)

F(r�) � F(l)

�
dPn(x, l, r):

RHS of the above is same as RHS of (3). j

It is a question of considerable interest to ask if NPMLE will have all its mass on the

uncensored observations. The answer is yes, provided all censored intervals contain at

least one uncensored observation. When there is a censoring interval empty of uncensored

observations, clearly some mass has to be attached to that interval or the likelihood would

be zero. That the weights are concentrated on the uncensored observations when all censoring

intervals are non-empty is a consequence of the following proposition.

PROPOSITION 1 If each observed censored interval (Li, Ri) contains at least one uncensored

observation Xj, j 6¼ i, then any distribution function that satisfies (3) attaches all its mass on

the uncensored observations.
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Proof Let F be a distribution satisfying (3) and let x1, x2, . . . , xm be the uncensored

observations. For any x let DF(x) ¼ F(x) � F(x�) be the weight F associates to x. We need

to show that
Pm

j¼1 DF(xj) ¼ 1. From (3) it follows that

DF(xj) ¼
1

n
þ

1

n

Xn
i¼1

(1 � di)I [xj 2 (Li, Ri)]
DF(xj)

F(Ri�) � F(Li)

� �
: (4)

Summing (4) over all uncensored observations, we get

Xm
j¼1

DF(xj) ¼
m

n
þ

1

n

Xn
i¼1

(1 � di)
P

j I [xj 2 (Li, Ri)]DF(xj)

F(Ri�) � F(Li)
(5)

For each censoring interval (Li, Ri), let ai be the slack between the mass associated to the

interval and the sum of weights of all uncensored observations in the interval. Then

ai ¼ F(Ri�) � F(Li) �
Xm
j¼1

I [xj 2 (Li, Ri)]DF(xj) (6)

and ai’s are all non-negative. From (5) and (6), it follows that

1 �
X

ai ¼ 1 �
1

n

X ai
F(Ri�) � F(Li)

or

X
ai ¼

1

n

X ai
F(Ri�) � F(Li)

(7)

where the sum is over all censored observations. As every interval contains at least one

uncensored observation, it follows from (4) that F(Ri�) � F(Li) � (1=n) and hence (7)

implies that

ai ¼
ai

n(F(Ri�) � F(Li))
(8)

for each i. Now if there exists i such that ai > 0, (F(Ri�) � F(Li))(1=n) þ ai > (1=n)

contradicting (8). j

We have now proved that the NPMLE will have all its mass on the uncensored observa-

tions except when it so happens that a censored interval contains no uncensored observation.

If this happens, we are in a situation similar to that of right censored data where the largest

observation is censored. While in the right censored case the extra mass is usually left

unassigned, for middle-censored data there is a natural way of handling this. When a

censored interval contains no uncensored points, we let the mass that corresponds to that

interval be assigned to its midpoint. Thus our initial estimator may give equal mass to all

uncensored observations and to the midpoints of those finite censored intervals that contain

no uncensored observations. If an infinite censoring interval happens to be empty of uncen-

sored observations, one can then assign the mass to any arbitrary point inside this interval for

the estimator to have a maximum.

Consider the following example where n ¼ 5 and z1 ¼ 2, z2 ¼ 4, z3 ¼ 6, z4 ¼ (1, 5) and

z5 ¼ (3, 7). Let p1, p2, p3 be the masses to be assigned to z1, z2, z3 respectively. The likeli-

hood function is given by

p1p2p3( p1 þ p2)( p2 þ p3)
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and, as pi’s add up to 1 and the roles of p1 and p3 are interchangeable, we can simplify the

problem to that of maximizing (x2)(1 � 2x)(1 � x)2 with p1 ¼ p3 ¼ x and p2 ¼ 1 � 2x. The

solution, then, is given by x ¼ (5 �
ffiffiffi
5

p
)=10 so that p1 ¼ p3 ¼ (5 �

ffiffiffi
5

p
)=10 and p2 ¼ 1=

ffiffiffi
5

p

is the solution to the NPMLE. In this example the iterations of the self-consistency equation

rapidly converged to the NPMLE.

The SCE, being a result of convergence of the EM algorithm, provides a local maximum of

the likelihood equation [see, for example, Mykland and Ren, 1996] and may not coincide

with the NPMLE. Examples of cases when an SCE is not the NPMLE can be constructed

by considering situations where two empty censoring intervals overlap. For instance, if we

have 1, 2, (3, 6), (4, 7) as the data, we could assign 0.25 mass to 1, 2, 4.5 and 5.5 to get

an SCE. The NPMLE will assign 0.25 each on 1 and 2, but assign 0.5 on some point, say

5, on the overlap area (4, 6). Both estimators are self-consistent, but the latter has higher like-

lihood. This happens whenever there are empty, overlapping intervals. In the next section we

shall show the strong consistency of self-consistent estimators for certain cases. This will

demonstrate that SCE and NPMLE are, at least for these special cases, asymptotically

equivalent and hence will be approximately the same for large samples.

3 CONSISTENCY OF SELF-CONSISTENT ESTIMATORS

Define P and Q, sub-distribution functions on R and R2 respectively, by

P(t) ¼ P(X � t, d ¼ 1)

Q(l, r) ¼ P(L � l, R � r, d ¼ 0)

and their empirical versions Pn and Qn by

Pn(t) ¼
1

n

Xn
i¼1

I (Xi � t, di ¼ 1)

Qn(l, r) ¼
1

n

Xn
i¼1

I (Li � l, Ri � r, di ¼ 0):

Then by Glivenko-Cantelli Lemma, it follows that Pn and Qn converge almost surely to P and

Q respectively and the convergence in each case is uniform on the respective domain. Also,

(1) can be written in terms of Pn and Qn as follows:

Fn(t) ¼ Pn(t) þ

ð
Fn(t) ^ Fn(r�) � Fn(t ^ l)

Fn(r�) � Fn(l)
dQn(l, r) (9)

By Helly’s Theorem, 9 a subsequence nk and a non-decreasing function F bounded by 0 and

1 such that on a set of probability 1, Fnk (t)!F(t) for each t.

PROPOSITION 2 If {jn} is a sequence of functions on R2 which converge uniformly to

bounded continuous function j, then

ð
jn(l, r) dQn(l, r) !

ð
j(l, r) dQ(l, r):
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Proof Note that,

ð
jn(l, r) dQn(l, r) �

ð
jn(l, r) dQ(l, r)

����
����

�

ð
(jn(l, r) � j(l, r)) dQn(l, r)

����
����þ

ð
j(l, r) dQn(l, r) �

ð
j(l, r) dQ(l, r)

����
����

� kjn � jk
ð

dQn þ

ð
j(l, r) dQn(l, r) �

ð
j(l, r) dQ(l, r)

����
����

where k�k represents the supremum norm. Now the first term on the RHS of the inequality

goes to zero since
Ð

dQn ¼ 1 while the second term goes to zero because the sequence of

empirical measures Qn converge to Q weakly and j is a bounded continuous function. j

LEMMA 2 Any subsequential limit F of Fn will satisfy the equation

F(t) ¼ P(t) þ

ð
F(t) ^ F(r�) � F(t ^ l)

F(r�) � F(l)
dQ(l, r) (10)

Proof For a fixed t, taking limits in (9) through the subsequence nk as k ! 1 and using

Proposition 2 with

jn(l, r) ¼
Fn(t) ^ Fn(r�) � Fn(t ^ l)

Fn(r�) � Fn(l)
,

the result follows. j

When P and Q are written in terms of F0 and G, (10) is equivalent to

F(t) � F0(t) ¼

ð
l<t<r

F(t) � F(l)

F(r�) � F(l)
(F0(r) � F0(l)) þ F0(l) � F0(t)

� �
dG(l, r): (11)

From (11), it follows that F(1) ¼ 1 and F(�1) ¼ 0. Note that if F ¼ F0, (11) is automati-

cally satisfied. If we were able to show that (11) has a unique solution, then it follows that F0 is

the only limit point of {Fn}. Then we will have that on a set of probability 1, Fn(x) ! F0(x) for

each x and by continuity of F0 uniformity of the almost sure convergence follows.

A necessary condition for consistency is what we call ‘‘identifiability’’. Let A(t) ¼

P(L < t < R). The condition is that A be not identically 1 on any interval [a, b], a � b for

which F0(b) > F0(a�). Observe that if A � 1 on any interval where F0 has a positive

mass, then censoring occurs with probability 1 on such an interval. As a consequence,

there will be no observations on this interval and that prevents us from distinguishing any

two distributions which are identical outside [a, b] but differing only on [a, b]. This condition

will be referred to as the ‘‘identifiability condition’’ and is a requirement for consistent

estimation of F0.

LEMMA 3 Let h ¼ (F � F0) and

g(t) ¼

ð
R2

c(l, r)I (l < t < r) dG(l, r)
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where c(l, r) ¼ (h(r) � h(l)=F(r�) � F(l)). Then

�AAdh ¼ �gdF (12)

Proof From (11) we get

h(t) ¼ �

ð
l<t<r

(F(t) � F(l))
h(r) � h(l)

F(r�) � F(l)
þ h(l) � h(t)

� �
dG(l, r)

¼ �

ð
l<t<r

[(F(t) � F(l))c(l, r) þ h(l)]dG(l, r) þ h(t)A(t):

So,

�h(t) �AA(t) ¼

ð
l<t<r

[(F(t) � F(l))c(l, r) þ h(l)]dG(l, r)

¼ F(t)g(t) þ C(t) (13)

where

C(t) ¼

ð
l<t<r

[h(l) � F(l)c(l, r)]dG(l, r):

‘‘Differentiating’’ both sides of (13) w.r.t. t, we get

h(t)dA(t) � �AA(t)dh(t) ¼ g(t)dF(t) þ F(t)dg(t) þ dC(t):

To show that (12) holds, clearly it is sufficient to show that

F(t)dg(t) þ dC(t) � h(t)dA(t) ¼ 0 (14)

If B(t) ¼
Ð
l<t<r

H(l, r) dG(l, r) for some function H , then it can be shown that dB(t) ¼

(
Ð1
t

H(t, r) dFRjL(rjt))dFL(t) � (
Ð t
�1

H(l, t) dFLjR(ljt))dFR(t) where FRjL( � jt) is the con-

ditional distribution function of R given L ¼ t. Hence, applying this to g and C,

LHS of (14) ¼ F(t)

ð1
t

c(t, r) dFRjL(rjt)

� �
dFL(t) � F(t)

ðt
�1

c(l, t) dFLjR(ljt)

� �
dFR(t)

þ

ð1
t

(h(t) � F(t)c(t, r))dFRjL(rjt)

� �
dFL(t)

�

ðt
�1

(h(l) � F(l)c(l, t))dFLjR(ljt)

� �
dFR(t) � h(t) dA(t)

¼ �dFR(t)

ðt
�1

h(t) dFLjR(ljt) þ dFL(t)

ð1
t

h(t) dFRjL(rjt) � h(t) dA(t)

¼ h(t)(dFL(t) � dFR(t)) � h(t) dA(t)

¼ 0

because
Ð t
�1

dFLjR(ljt) ¼
Ð1
t

dFRjL(rjt) ¼ 1 and A(t) ¼ FL(t) � FR(t): j

Thus, if the only function h satisfying (12) is the zero function, then we would have proved

the strong consistency of the SCE. We have not yet been able to show that this (12) has a

unique solution in the general case, but we give below a proof for the special case when

one of the end points of the censoring interval is degenerate. Although the result is stated

for the case when L is degenerate (for instance, censoring if it occurs, starts on a certain birth-

day of the individual), the proof works equally well when R is degenerate.
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THEOREM 2 Assume that F0 and FR are continuous and L � l0. Assume the identifiability

condition is satisfied. Then the only function F that satisfies ð11Þ is F0 and hence the SCE is

uniformly strongly consistent.

Proof In this special case (13) becomes

�h(t) �AA(t) ¼ I (t > l0)

ð1
t

[(F(t) � F(l0))c(l0, r) þ h(l0)]dFR(r) (15)

As �AA(t) ¼ 1 � P[t 2 (l0, R)] ¼ 1 � I (t > l0) �FFR(t), �AA(t) ¼ 1 for all t � l0 and �AA(t) ¼ FR(t) for

all t > l0; hence from (15), h(t) ¼ 0 for all t � l0. In particular, h(l0) ¼ 0. Thus (15) becomes

�h(t) �AA(t) ¼ I (t > l0)

ð1
t

F(t) � F(l0)

F(r�) � F(l0)
h(r) dFR(r):

Similarly, (12) holds with

g(t) ¼ I (t > l0)

ð1
t

h(r)

F(r�) � F(l0)
dFR(r): (16)

Note that from the assumptions of the theorem it follows that F, h and g are continuous on

(l0, 1). We aim to show that h � 0 on (l0, 1). Assuming 9t0 > l0 such that h(t0) > 0, we

will arrive at a contradiction. The proof is similar if h(t0) < 0. j

As h(l0) ¼ h(1) ¼ 0, 9t1 < t2 such that t1 � l0, t2 � 1, h(t1) ¼ h(t2) ¼ 0 and h(t) > 0 on

(t1, t2). From (16), on (l0, 1), g(t) ¼
Ð1
t

c(r) dFR(r) where c(r) ¼ (h(r)=F(r�) � F(l0)).

CLAIM 1 g(t1) � 0.

Suppose not. Then 9t� such that g > 0 on (t1, t�). We shall now show that �AA(t) > 0 on

(t1, t�). If 9t 2 (t1, t�) such that �AA(t) ¼ 0, then �AA(t) ¼ 0 for all t 2 (l0,t) so that by the

identifiability condition, dF0(t) ¼ 0 for all t 2 (l0, t). From (12) dF(t) ¼ 0 on (t1, t); so

dh(t) ¼ dF(t) � dF0(t) ¼ 0 on (t1, t) which implies h � 0 there, contrary to our assumption.

From (12), dh(t) ¼ (�g(t)=1 � A(t))dF(t), so
Ð t�
t1

(�g(t)=1 � A(t))dF(t) ¼ h(t�) �h(t1) ¼

h(t�). Now, LHS � 0 contradicting the fact that h(t�) > 0. This proves Claim 1.

CLAIM 2 g(t2) � 0.

Suppose not. Then 9t� 2 (t0, t2) such that g < 0 on (t�, t2). Similar to the previous situa-

tion, we have �AA(t) > 0 on (t�, t2). As earlier, h(t2) � h(t�) ¼
Ð t2
t�

( � g(t)=1 � A(t))dF(t) � 0,

implying h(t�) � 0 which is contradiction. Thus Claim 2 is proved.

On (t1, t2), dg(t) ¼ �c(t)dFR(t) ¼ ( � h(t)dFR(t)=F(t�) � F(l0)) � 0, so g is decreasing

there. Thus from Claim 1 and Claim 2 it follows that g � 0 on (t1, t2). (Note that the

argument goes through even if t2 ¼ 1). From (12), �AAdh � 0 on (t1, t2). As g(t) ¼Ð1
t

c(r) dFR(r), FR is a constant (t1, t2) and hence �AA is a constant on (t1, t2).

If c > 0, h � 0 on (t1, t2) which is a contradiction. If c ¼ 0, �AA � 0 on (t1, t2) and hence

by the identifiability condition F0 is constant on (t1, t2). As h(t1) ¼ h(t2) ¼ 0,

F(t1) ¼ F(t2), so F is a constant on (t1, t2). So h is a constant on (t1, t2), which means

h � 0 on (t1, t2). This is a contradiction.

4 ILLUSTRATIVE EXAMPLES

A simulation study was performed to measure the performance of self-consistent estimators

where an exponential (mean¼ 10) random variable was middle-censored by random intervals
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with left end points being exponential (mean¼ 5) and interval widths being an independent

exponential (mean¼ 5). A sample of size 100 was taken and this resulted in 22 of them being

censored. Figure 1 shows the SCE along with the original exponential distribution function

F0. The maximum distance kFn � F0k is 0.0827 which is very good compared to the

Kolmogorov–Smirnov distance, namely the maximum distance of the EDF. En of the uncen-

sored data from the true distribution, which is kEn � F0k ¼ 0:0715. The authors also tried

out various other survival distributions such as gamma and Weibull that were censored by

intervals whose left ends were distributed as exponential, gamma, Weibull or uniform and

interval width was a positive random variable or a constant. In all these cases, the resulting

estimators for middle censoring were in very close agreement with the EDF of the original

uncensored data. It is clear that the amount of censoring in any of these cases, is approxi-

mately P(L � X � R).

Finally we applied our techniques to an actual data set on melanoma survival collected at

Odense University Hospital, Denmark [see Andersen et al., 1993]. The sample contains 205

data points, ranging from 10 to 5565. The data were censored by a random interval whose left

end was an exponential random variable with mean 2000 and width was exponential with

mean 1000. Over 23% of data were censored resulting in 157 uncensored observations.

The SCE Fn is given in Figure 2 while the EDF En of the survival data is in Figure 3.

They are shown super-imposed in Figure 4, to see how close they are. Indeed, the

maximum distance kFn � Enk between them is 0.0604 while the maximum relative distance

k((Fn � En)=En)k turns out to be still a small 0.153.

FIGURE 1 The EDF and SCE for the simulated exponential data.

FIGURE 2 SCE for the censored melanoma survival data.
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